Book Announcements

DAIUTO, B. J., HARTLEY, T. T., and CHICATELLI, S. P., The Hyperbolic Map and Applications to the Linear Quadratic Regulator, Lecture Notes in Control and Information Sciences, Vol. 110, Springer-Verlag, New York, 1989, 114 pages.

Purpose: This research monograph discusses the theory of the discrete-time hyperbolic map. The dynamics of the map are analyzed from the viewpoints of stability, quasiperiodicity, and chaos.

Contents: Qualitative dynamics of the hyperbolic iteration map; general solution derivation of the hyperbolic iteration map; linear quadratic regulator—background and effects of negative Q; introduction to chaos.

ZHANG, X. J., Auxiliary Signal Design in Fault Detection and Diagnosis, Lecture Notes in Control and Information Sciences, Vol. 134, Springer-Verlag, Berlin, 1989, 213 pages.

Purpose: This work is concerned with the theory and application of auxiliary signal design in fault detection and diagnosis of systems that can be represented by linear multi-input/multi-output stochastic models.

Contents: Preliminaries; sequential probability ratio test; auxiliary signals for improving fault detection; extension to multiple hypothesis testing; modeling, identification, fault detection, and diagnosis of chemical processes.

RASBAND, S. N., Chaotic Dynamics of Nonlinear Systems, Wiley, New York, 1990, 230 pages.

Purpose: The major models for the transitions to chaos exhibited by dynamic systems are presented. Classical topics, fundamental examples, and exercises are included.

Contents: One-dimensional maps; universality theory; fractal dimension; differential dynamics; nonlinear examples with chaos; two-dimensional maps; conservative dynamics; measures of chaos; complexity and chaos.

BERMAN, A., NEUMANN, M. and STERN, R., Nonnegative Matrices in Dynamic Systems, Wiley, New York, 1989, 167 pages.

Purpose: The application of the theory of non-negative matrices to certain problems arising in positive linear differential and control systems is the focus of this volume.

Contents: Convex sets; Matrix theory background; differential and control system preliminaries; exponentially nonnegative matrices; extended *M*-matrices; Cone reachability; applications to feedback control; controllability, observability, and realizability of positive control systems.

PEDRYCZ, W., Fuzzy Control and Fuzzy Systems, RSP Ltd., Taunton, Somerset, U.K., 1989, 258 pages; distributed by Wiley, New York.

Purpose: The aim of this book is to study the state-of-theart of fuzzy sets and their application in control engineering. No assumption of previous knowledge of the subject is made.

Contents: Introduction to fuzzy sets; fuzzy controllers—preliminaries and basic construction; fuzzy relational equations; design aspects of the fuzzy controller; theoretical developments in the construction of fuzzy controllers; identification of fuzzy models; prediction and control in fuzzy models; models of decision-making and some topics of fuzzy arithmetic in setting fuzzy relational equations.

STÉPÁN, G., Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics, Series 210, Longman Scientific and Technical, U.K., and Wiley, New York, 151 pages.

Purpose: This research note gives an analytical stability criterion for autonomous retarded functional differential equations. Examples are drawn from the fields of robotics, manmachine systems, machine dynamics, and bioecology.

Contents: Introduction and survey; direct stability investigation; stability charts; applications.